Skip to main content

Alkynes in medicine

Often used Alkynes in medicine 

There are not many known Alkynes that hold a good outcome for pharmaceuticals. They are rather toxic and dangerous for humans. Stay alert and be careful when working with Alkynes in the lab or on a workspace.

Although specific Alkynes known as ene-diynes possess a very strong and aggressive anti-tumor compound. These molecules are cyclic and contain an alkene (double bond) in between two alkyne (triple bonds) functions, therefore the name "ene < alkene" and "diyne < two alkynes".

An example of this anti-tumor working agent is the drug calicheamicin. When released into the tumor cells, it undergoes a strong reaction when it gets in contact with DNA, known as the Bergman cyclization. It will cleave the DNA and thus destroying it. 

Structure of calicheamicin



Trivia: it is rumored Alexander the Great was poisoned with calicheamicin. His death has had the same symptoms as of someone that would drink from the water of the river Styx (river of death and hell), which would've been contaminted with calicheamicin.

Comments

Popular posts from this blog

Alkynes: addition of H2 gas and Lindlar catalyst

Alkynes: addition of Hydrogen gas (H2) Performing a catalytic reduction on an alkyn will result in giving an alkane. The alkene intermediate will be formed in the process, but will immediately react into an alkane. The end result is just the formed alkane, without stacking of the alkene intermediate. The Lindlar catalyst In theory this is a "poisoned or defected" catalyst. If you use a normal catalyst you will get the above effect with your alkyne. The Lindlar catalyst contains Palladium combined with Calcium-carbonate and treated with Lead. Palladium is the actual catalyst, the calcium carbonate is the carrier of the substance and the lead is the poisonous compound. Using the Lindlar catalyst instead of another catalyst together with Hydrogen gas, will lead into forming the cis-alkene intermediate instead of the forming of the corresponding alkane. 

Alkylhalides: Substitution reactions 6 (Sn1)

Alkylhalides: Substitution Nucleophile substitution reaction ( Sn1 reaction ) Sn1 side reactions I will now discuss some side reactions that can occur when a Sn1 reaction takes place. Carbocation shift Illustrated in the scheme below: Benzyl- and allylhalides  Benzyl- and allylhalides can undergo Sn1 AND Sn2 reactions. How to distinct them? Sn1 conditions: protic solvent and by adding a weak attacking nucleophile. Note: Benzyl- and allylhalides easily undergo Sn1 reactions, because their carbocations are very stable. Sn2 conditions: aprotic solvent and by adding a strong attacking nucleophile. Note: tertiary benzylhalides and tertiary allylhalides will NOT undergo a Sn2 reaction because of the steric effects (see chapter Sn2 reaction blogposts). Sn2 reaction examples Sn1 reaction examples Sn1 and Sn2 reactions in biology, nature and medicines S-Adenosyl methionine This is a biological methylating agens, also known as SAM . It is a frequen...

Meadowsweet under the microscope - 1

We acquired some meadowsweet powder and put it under a microscope, following the standard procedure of the European Pharmacopeia (using some droplets of a chloralhydrate solution (80 g in 20 mL)), heating followed by cooling, to minimize the crystallization process of chloralhydrate. Namely a phase contrast microscope.  What we saw was a lot of irrecognisable structures, cells, celldebris, trichoma's (hairs), stoma, ..., but fascinating nonetheless.