Skip to main content

Alkylhalides: Introduction

Alkylhalides: an initiation

Background information

Alkylhalides are compounds (in this case salts) that consist of an alkyl group and an halogen (seventh row in the table of Mendeljev). 
Alkylhalides have good leaving groups, these groups are the atoms (or the atom) that will be substituted or eliminated during elimination or substitution reactions on the molecule. This fenomenon is caused by the polar bond formed between the halogen and the alkyl group, making the halogen more afferent to be attacked (substituated / eliminated) by a nucleophile.

Nucleophile substitution reaction (SN2 reaction)

A nucleophile 'attacks' the alkylhalide, the leaving group - in this case the halogen - will be taken of the compound and will be replaced (SUBSTITUTED) by the nucleophile (hense the reaction its name). This reaction however is characterized and depended by several factors including:
  • the solvent in which the reaction is taking place
  • the reactivity or activity of the attacking nucleophile
  • the concentration and amount of added nucleophile
  • the structure and compound of the alkylhalide
Experiments have shown that the Sn2 reaction really takes place by noticing following measures:
  • the configuration of the substituted product is inverted (contrary) to the original reacting chiral configured alkylhalide
  • if the alkylhalide is more branched off at the reaction center, the reaction rate of the attacking nucleophile will go down thus resulting in a much slower reaction (slow tertiary < secondary < primary fast)
  • logic: the reaction rate is dependent on the concentration of both compounds (alkylhalide and nucleophile)




Comments

Popular posts from this blog

Alkynen: Elektrofiele additie

Elektrofiele additie: Waterstofhaliden op alkynen Voorbeeld van waterstofhaliden: HCl, HBr, HF, HI Gebruik van één equivalent waterstofhalide met alkyn (dus 1:1 geen overmaat geen tekort) Bij een overmaat aan het waterstofhalide zal een tweede reactie plaatsvinden op het gehalogeneerde alkyn, ter vorming van een geminaal regioisomeer.

Alkanes and radicals 4: Additionreactions of radicals

Alkanes and radicals Addition of radicals on an alkene Look at the two reactions below, the first reaction is in normal circumstances, which will result in a normal Markovnikov reaction  ( with the addition of a   protic acid  HX to an  alkene , the acid hydrogen (H) becomes attached to the carbon with fewer   alkyl   substituents , and the  halide  (X) group becomes attached to the carbon with more alkyl substituents). In the second reaction, peroxide is used as condition, this will result in an anti-Markovnikov  reaction. The peroxide will generate Br radicals in small amounts (this is the initiation for this anti-reaction).  Let's see the peroxide mechanism in detail. As stated above, an alkyl peroxide is a radical initiator. The electrophile will add on the sp2 carbon which carries the most hydrogens (where also the radical with most alkyl groups will be formed). The termination reactions will have several other outcomes. In the major outcome, the radical will not b

Meadowsweet under the microscope - 1

We acquired some meadowsweet powder and put it under a microscope, following the standard procedure of the European Pharmacopeia (using some droplets of a chloralhydrate solution (80 g in 20 mL)), heating followed by cooling, to minimize the crystallization process of chloralhydrate. Namely a phase contrast microscope.  What we saw was a lot of irrecognisable structures, cells, celldebris, trichoma's (hairs), stoma, ..., but fascinating nonetheless.