Skip to main content

Alkylhalides: Substitution reactions 2 (Sn2)

Alkylhalides: Substitution

Inversion

When a Sn2 reaction occurs, the stereo configuration of the molecule which is attacked will changed, it will be inverted relative to the original reactant. This happens because of the attack on the back-side, explained in the previous post. The fenomenon is called the Walden inversion. In the example illustrated below the bromobutane is R configurated, after the reaction attacked by the nucleophile OH- the butanol is S configurated: 

Leaving groups

As seen before, the reaction rate of the Sn2 reaction is dependent on the kind of leaving group. Good leaving groups are leaving groups which conjugated base is derived from strong acids, which means: weak bases (which are also the most stable bases). What does this mean? This means that Iodide is a much better leaving group than Fluoride. Basically what this means is:

I-  <<  Br-   <<   Cl-   <<   F-   BASICITY
RI  >>  RBr  >>  RCl   >>  RF   REACTIVITY

RF won't even undergo a reaction, it is too unreactive.
What are good leaving groups then? As seen above Cl-, Br- and I- are good for substitution reactions. But also sulfonates and sulfates can be used. As neutral leaving groups water, amines and sulfides can be used and are the most common. 

Nucleophiles from the second row of the table have approximately the same size as each other. If the base is more stronger, the nucleophile will react better. Thus it is determined by their conjugated acid, if the conjugated acid is more acid, the base will not be as strong and the nucleophile will not be very reactive:

NH3   <<    H2O   <<    HF   ACIDITY 
NH2-   >>   OH-   >>   F-   STRONGEST BASE
Strongest base and thus the better nucleophile is NH2-

Comments

Popular posts from this blog

Alkynen: Elektrofiele additie

Elektrofiele additie: Waterstofhaliden op alkynen Voorbeeld van waterstofhaliden: HCl, HBr, HF, HI Gebruik van één equivalent waterstofhalide met alkyn (dus 1:1 geen overmaat geen tekort) Bij een overmaat aan het waterstofhalide zal een tweede reactie plaatsvinden op het gehalogeneerde alkyn, ter vorming van een geminaal regioisomeer.

Coca-Cola: Life - myth or truth?

"Coca-Cola Life" Recently the Coca-Cola company released a new beverage: the Coca-Cola Life drink. It should contain less sugar than the normal Coca-Cola drink; a part of the sugar is replaced with the recently approved sweetener from the Stevia plant (stevioglycosides). It's being sold as a 'natural' drink, but those stevioglycosides are as natural as the chemical sweetener aspartame found in Light and Zero drinks. However it is true that the amount of sugar is much lower (being reported as 33%, some say it's around 20%); yet approximately still 3-4 sugar cubes / 33 cl can (5-6 in a normal can). I bought it myself and found that the flavor has not really changed from the original Coca-Cola, however it does taste more "flat" - but definitely true it yourself. The outside of the can has the colour green. I personally do not associate this "healthy - natural" colour with Coca-Cola, but it's growing on me. In sum...

Basic structure of a virus

Very basic explanation of a virus: Virus consists of a  - Head - Tail - Legs/Fibres The head contains the DNA/RNA, nucleic acids (genetic material, GM). It depends on what kind of virus we speak of, there are a lot of different kind of viruses. It is protected from the outside with a protein coat, that consists of hemagglutinin and neuraminidases, hence names given for viruses (f.e. H1N1, Influenza virus). The tail connects the head with the legs/fibres. Those legs will make sure the virus can bind on its host, for example a bacterial cell or a human cell. Viruses that bind on bacteria are often called bacteriophages. When connected to a host, the virus will inject its DNA/RNA into the cell via the tail. Once its GM is injected, the virus will normally eject from the cell and fall apart/gets secreted out of the organism. The GM will be implemented into the hosts genome often via reverse transciptases. Now this GM will code for proteins that induce transcription of th...