Skip to main content

Alkanes and radicals 4: Additionreactions of radicals

Alkanes and radicals

Addition of radicals on an alkene
Look at the two reactions below, the first reaction is in normal circumstances, which will result in a normal Markovnikov reaction (with the addition of a protic acid HX to an alkene, the acid hydrogen (H) becomes attached to the carbon with fewer alkyl substituents, and the halide (X) group becomes attached to the carbon with more alkyl substituents). In the second reaction, peroxide is used as condition, this will result in an anti-Markovnikov reaction. The peroxide will generate Br radicals in small amounts (this is the initiation for this anti-reaction). 

Let's see the peroxide mechanism in detail. As stated above, an alkyl peroxide is a radical initiator. The electrophile will add on the sp2 carbon which carries the most hydrogens (where also the radical with most alkyl groups will be formed). The termination reactions will have several other outcomes. In the major outcome, the radical will not be rearranged (which oftens occurs however with carbocations = 'carbocation shift'). 

Although, the radical addition on an alkene in combination with the peroxide effect can only happen with HBr, why? Because both propagation steps from the HBr process are exotherm, in contrary to HCl & HI. With these compounds, the normal electrophile addition occurs via the carbocation intermediate. 


Comments

Popular posts from this blog

Erythropoietin: definition, structure, synthesis in vivo

Definition: EPO: = erythropoietin   A glycoprotein hormon-like structure, a sialoglycoprotein, which is an important factor in the survival, growth and proliferation of erythroid precursor cells (EPC) and it improves the de novo creation, differentation and growth of red blood cells (RBC). Thus, EPO controls the erythropoiesis = production of RBC. EPC: these are cells that are located in the bone marrow, will eventually form the RBC. RBC: cells responsible for the transport and distribution of oxygen throughout the body. Structure: Built out of 165 aminoacids (AA). They are all connected and form 1 polypeptide chain.  Although, within the chain, there are 2 disulfide bonds.  Respectively on positions: Cys7-161 and Cys29-33  Cys = cystein and the numbers indicate the positions these AA are located. Cystein structure. Available  sulfide  group for bonding There are also 4 positions where there is a possibility for glycosylation  Namel...

Alkylhalides: Substitution reactions 6 (Sn1)

Alkylhalides: Substitution Nucleophile substitution reaction ( Sn1 reaction ) Sn1 side reactions I will now discuss some side reactions that can occur when a Sn1 reaction takes place. Carbocation shift Illustrated in the scheme below: Benzyl- and allylhalides  Benzyl- and allylhalides can undergo Sn1 AND Sn2 reactions. How to distinct them? Sn1 conditions: protic solvent and by adding a weak attacking nucleophile. Note: Benzyl- and allylhalides easily undergo Sn1 reactions, because their carbocations are very stable. Sn2 conditions: aprotic solvent and by adding a strong attacking nucleophile. Note: tertiary benzylhalides and tertiary allylhalides will NOT undergo a Sn2 reaction because of the steric effects (see chapter Sn2 reaction blogposts). Sn2 reaction examples Sn1 reaction examples Sn1 and Sn2 reactions in biology, nature and medicines S-Adenosyl methionine This is a biological methylating agens, also known as SAM . It is a frequen...

Alkanes and radicals 1: Introduction

Alkanes and radicals Introduction Let's start with one of the most complex compounds consisting of alkanes and cycloalkanes (naftenes) that can be separated by distillation: Petroleum . Some tips when writing reactions with radicals, have a look on these reactions below, when an heterolytic bond gets cleaved, the arrowhead gets two barbs. When there is a homolytic bond that gets cleaved the arrowhead that shows the direction of the radical, gets one barb, have a look: Alkanes are little reactive, they will not react fast and heavily, because they only contain strong  sigma  σ bindings (single bonds). They also only have non-partial charged atoms. Although, alkanes DO react with Cl2 and Br2. The reactions are listed below, have a look, first the actual reaction, then shown in detail with different steps :