Skip to main content

Alkanes and radicals 2: Product spread

Alkanes & radicals

Relative stabilities of alkyl radicals
Alkyl  groups stabilize carbocations about 5 to 10 times better than when alkyl groups have to stabilize radicals: 


Radicals: Resonance >> Hyperconjugation
Carbocations: Hyperconjugation >> Resonance

Hyperconjugation makes the carbocations more stabilized than when hyperconjugation occurs with radicals (not so stable). This is explained due to the fact that in carbocations, both electrons sit in the same binding orbital, with radicals however, one of the electrons is sited in the anti-binding orbital. 

Product spread
The product spread (product outcome) is determined by CHANCE and REACTIVITY. The chance (or probability) is based on the relative amount of primary and secundary protons (in the example below 6:4), but secundary hydrogens are more reactive than primary hydrogens, this means both chance and reactivity determine the outcome of the reaction. 

Thus to determine the product spread, both chance and intrinsic reactivity have to be considered: 
  • Probabillity: the amount of hydrogens that can be removed to lead to a certain product.
  • Reactivity: the relative rate with what a hydrogen gets removed.


Some examples of chlorationproducts found below. Radical chlorationreactions are less selective than reactions via a carbocation intermediate. 


Comments

Popular posts from this blog

Erythropoietin: definition, structure, synthesis in vivo

Definition: EPO: = erythropoietin   A glycoprotein hormon-like structure, a sialoglycoprotein, which is an important factor in the survival, growth and proliferation of erythroid precursor cells (EPC) and it improves the de novo creation, differentation and growth of red blood cells (RBC). Thus, EPO controls the erythropoiesis = production of RBC. EPC: these are cells that are located in the bone marrow, will eventually form the RBC. RBC: cells responsible for the transport and distribution of oxygen throughout the body. Structure: Built out of 165 aminoacids (AA). They are all connected and form 1 polypeptide chain.  Although, within the chain, there are 2 disulfide bonds.  Respectively on positions: Cys7-161 and Cys29-33  Cys = cystein and the numbers indicate the positions these AA are located. Cystein structure. Available  sulfide  group for bonding There are also 4 positions where there is a possibility for glycosylation  Namel...

Alkylhalides: Substitution reactions 6 (Sn1)

Alkylhalides: Substitution Nucleophile substitution reaction ( Sn1 reaction ) Sn1 side reactions I will now discuss some side reactions that can occur when a Sn1 reaction takes place. Carbocation shift Illustrated in the scheme below: Benzyl- and allylhalides  Benzyl- and allylhalides can undergo Sn1 AND Sn2 reactions. How to distinct them? Sn1 conditions: protic solvent and by adding a weak attacking nucleophile. Note: Benzyl- and allylhalides easily undergo Sn1 reactions, because their carbocations are very stable. Sn2 conditions: aprotic solvent and by adding a strong attacking nucleophile. Note: tertiary benzylhalides and tertiary allylhalides will NOT undergo a Sn2 reaction because of the steric effects (see chapter Sn2 reaction blogposts). Sn2 reaction examples Sn1 reaction examples Sn1 and Sn2 reactions in biology, nature and medicines S-Adenosyl methionine This is a biological methylating agens, also known as SAM . It is a frequen...

Alkanes and radicals 1: Introduction

Alkanes and radicals Introduction Let's start with one of the most complex compounds consisting of alkanes and cycloalkanes (naftenes) that can be separated by distillation: Petroleum . Some tips when writing reactions with radicals, have a look on these reactions below, when an heterolytic bond gets cleaved, the arrowhead gets two barbs. When there is a homolytic bond that gets cleaved the arrowhead that shows the direction of the radical, gets one barb, have a look: Alkanes are little reactive, they will not react fast and heavily, because they only contain strong  sigma  σ bindings (single bonds). They also only have non-partial charged atoms. Although, alkanes DO react with Cl2 and Br2. The reactions are listed below, have a look, first the actual reaction, then shown in detail with different steps :