Skip to main content

Alkylhalides: Substitution reactions 4 (Sn1)

Alkylhalides: Substitution

Nucleophile substitution reaction (Sn1 reaction)

To kick off this new chapter from the alkylhalides, some experimental background theory concerning Sn1 reactions:
  • the reaction rate of the reaction depends ONLY on the concentration of the alkyl halide (unlike Sn2 reactions where the nucleophile concentration was important aswell !!!).
  • the reaction rate of the reaction INCREASES if the alkylhalide is more branched at its reaction center (again unlike Sn2 reactions where more branched reaction centers are LESS active !!!). This means a tertiary alkyl bromide f.e. will have a huge relative reaction rate, methylbromide on the other hand will have no Sn1 reaction.
  • when an alkyl halide reacts with its enantiomere (cfr. stereochemistry), the reaction product will be a racemic mixture (this is a mixture of two enantiomeres of the same compound) or partial racemic product.
Conclusion: this indicates at the presence of a CARBOCATION intermediate

The Sn1 reaction is a two step reaction. The leaving group has already left the alkylhalide before the nucleophile comes in to play. See the example for more details:


Reaction rate Sn1 reaction

The reaction rate of the Sn1 reaction is dependent on the following basic rules:
  • the better the leaving group the faster the reaction will take place and be finished.
  • if the carbocation is very very stable, the reaction rate will be high. 
  • the more polar the solvent is, the higher the reaction rate. 
as stated before, the concentration of the attacking nucleophile has effect at all on the Sn1 reaction. Why? It is not implemented in the rate-determing step.

Comments

Popular posts from this blog

Erythropoietin: definition, structure, synthesis in vivo

Definition: EPO: = erythropoietin   A glycoprotein hormon-like structure, a sialoglycoprotein, which is an important factor in the survival, growth and proliferation of erythroid precursor cells (EPC) and it improves the de novo creation, differentation and growth of red blood cells (RBC). Thus, EPO controls the erythropoiesis = production of RBC. EPC: these are cells that are located in the bone marrow, will eventually form the RBC. RBC: cells responsible for the transport and distribution of oxygen throughout the body. Structure: Built out of 165 aminoacids (AA). They are all connected and form 1 polypeptide chain.  Although, within the chain, there are 2 disulfide bonds.  Respectively on positions: Cys7-161 and Cys29-33  Cys = cystein and the numbers indicate the positions these AA are located. Cystein structure. Available  sulfide  group for bonding There are also 4 positions where there is a possibility for glycosylation  Namel...

Alkylhalides: Substitution reactions 6 (Sn1)

Alkylhalides: Substitution Nucleophile substitution reaction ( Sn1 reaction ) Sn1 side reactions I will now discuss some side reactions that can occur when a Sn1 reaction takes place. Carbocation shift Illustrated in the scheme below: Benzyl- and allylhalides  Benzyl- and allylhalides can undergo Sn1 AND Sn2 reactions. How to distinct them? Sn1 conditions: protic solvent and by adding a weak attacking nucleophile. Note: Benzyl- and allylhalides easily undergo Sn1 reactions, because their carbocations are very stable. Sn2 conditions: aprotic solvent and by adding a strong attacking nucleophile. Note: tertiary benzylhalides and tertiary allylhalides will NOT undergo a Sn2 reaction because of the steric effects (see chapter Sn2 reaction blogposts). Sn2 reaction examples Sn1 reaction examples Sn1 and Sn2 reactions in biology, nature and medicines S-Adenosyl methionine This is a biological methylating agens, also known as SAM . It is a frequen...

Alkanes and radicals 1: Introduction

Alkanes and radicals Introduction Let's start with one of the most complex compounds consisting of alkanes and cycloalkanes (naftenes) that can be separated by distillation: Petroleum . Some tips when writing reactions with radicals, have a look on these reactions below, when an heterolytic bond gets cleaved, the arrowhead gets two barbs. When there is a homolytic bond that gets cleaved the arrowhead that shows the direction of the radical, gets one barb, have a look: Alkanes are little reactive, they will not react fast and heavily, because they only contain strong  sigma  σ bindings (single bonds). They also only have non-partial charged atoms. Although, alkanes DO react with Cl2 and Br2. The reactions are listed below, have a look, first the actual reaction, then shown in detail with different steps :